Author:
Dey Neil,Ding Jing,Ferrell Jack,Kapper Carolina,Lovig Maxwell,Planchon Emiliano,Williams Jonathan P.
Abstract
Modern machine learning algorithms are capable of providing remarkably accurate point-predictions; however, questions remain about their statistical reliability. Unlike conventional machine learning methods, conformal prediction algorithms return confidence sets (i.e., set-valued predictions) that correspond to a given significance level. Moreover, these confidence sets are valid in the sense that they guarantee finite sample control over type 1 error probabilities, allowing the practitioner to choose an acceptable error rate. In our paper, we propose inductive conformal prediction (ICP) algorithms for the tasks of text infilling and part-of-speech (POS) prediction for natural language data. We construct new ICP-enhanced algorithms for POS tagging based on BERT (bidirectional encoder representations from transformers) and BiLSTM (bidirectional long short-term memory) models. For text infilling, we design a new ICP-enhanced BERT algorithm. We analyze the performance of the algorithms in simulations using the Brown Corpus, which contains over 57,000 sentences. Our results demonstrate that the ICP algorithms are able to produce valid set-valued predictions that are small enough to be applicable in real-world applications. We also provide a real data example for how our proposed set-valued predictions can improve machine generated audio transcriptions.
Publisher
New England Statistical Society
Reference62 articles.
1. Learning long-term dependencies with gradient descent is difficult;IEEE Transactions on Neural Networks,1994
2. Knowing what you know: valid and validated confidence sets in multiclass and multilabel prediction;Journal of Machine Learning Research,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献