DEVELOPMENT AND RESEARCH OF PROMISING SCHEMES FOR DIVIDING PIPES INTO DIMENSIONAL BILLETS

Author:

Karnaukh SergiiORCID

Abstract

The purpose of this work is to study the known method of division of pipes by introducing a figure knife and the development of promising designs of equipment for division of pipes into measured workpieces. Based on the analysis of the actuating crank-slider mechanisms used in the equipment for division of pipes into measured workpieces, promising schemes of short-connecting rod mechanisms have been discovered that provide a local pipe section along the perimeter. The developed design of the device for dividing pipes into dimensional workpieces by the eccentric twisting method, which contains a wedge-joint mechanism in combination with a compact circular actuator, also allows to reduce energy and power costs for separation, reduce the consequences of instantaneous unloading of equipment and ensure high quality workpieces. A mathematical model of the proposed equipment was developed and the modeling of the cutting process was carried out using the DEFORM-3D software package. The analysis of the results obtained showed that in the extreme positions of the knives, jamming of the knives is possible. To eliminate jamming, it is necessary that the knives do not reach the extreme position. The adequacy of the mathematical model is confirmed by experimental studies. The error of the calculated and measured values of the torque on the cutting knife does not exceed 10%. This is due to the need for a more correct accounting of friction on the contact surfaces of the equipment. Cut tubular blanks have high geometric accuracy and high quality of the cut surface.

Publisher

Vinnytsia National Agrarian University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3