SUBSTANTIATION OF NEUROCONTROLER PARAMETERS FOR THE CONTROL SYSTEM OF THE VIBRATOR DRIVE OF ADAPTIVE VIBRATION TECHNOLOGICAL MACHINES

Author:

Yaroshenko Leonid1,Chubyk Roman2

Affiliation:

1. Vinnytsia National Agrarian University

2. Lviv Polytechnic National University

Abstract

The article proposes and analyzes the structure of the neurocontroller for controlling the vibratory drive of adaptive vibrating technological machines (AVTM), which allows to implement a two-circuit neurocontrol system of energy and technological parameters of AVTM that its each circuit takes into account inertial and dissipative characteristics. By monitoring the phase shift between the frequency of forced oscillations of the AVTM working body and the frequency of cyclic forcing force of the vibrating drive and using predictive model neurocontrol technology to correct the frequency of cyclic forcing force of the vibrating drive, the neurocontroller provides mini resonant operation. The second circuit of neurocontrol provides on the resonant frequency tracking and stabilization of the specific work of the vibration field of AVTM during the vibration cycle using to adjust the amplitude of oscillations of the working body hybrid neuro-PID control system with self-tuning based on neuromodel AVTM system. The proposed design of the neurocontroller to control the vibratory drive of adaptive vibrating technological machines can improve the quality characteristics of the control of dynamic parameters of both electromagnetic and unbalanced vibratory drive. The use of neural network technologies in the design solution allows the introduction of neurocontrol algorithms that change the parameters of the process of vibration processing implemented by AVTM, or change the load mass of the working body AVTM, through the use of predictive model neurocontrol based on the simplex method or quasi-Newtonian algorithm that will optimally choose a strategy for correcting the frequency of cyclic forcing force of the vibrator to ensure and maintain a constant resonant mode of AVTM and at the resonant frequency AVTM will stabilize the specific operation of the neural network PID-controller with self-adjustment on the basis of the direct AVTM neuroemulator.

Publisher

Vinnytsia National Agrarian University

Reference19 articles.

1. 1. Widrow B., Smith F.W. Pattern-recognizing control systems. Proceedings of Computer and Information Sciences. Washington, USA 1964. Vol. 12. P. 288 – 317.

2. 2. Venayagamoorthy G.K., Harley R.G., Wunsch D.C. Implementation of Adaptive Criticbased Neurocontrollers for Turbogenerators in a Multimachine Power System”. IEEE Transactions on Neural Networks. 2003. Vol. 14, Issue 5. P. 1047 -1064.

3. 3. Chubyk R.V., Yaroshenko L.V. Kerovani vibratsiyni tekhnolohichni mashyny. Vinnytsya.: VNAU, 2011. 355 s.

4. 4. Prystriy dlya keruvannya elektromagnitnym vibropryvodom. Pat. 10971 А Ukraina, MPK B65BG27/24. Bernik P.S., Chubyk R.V., Pashystyy V.А. № а 200502375; zayavl. 16.03. 2005 opubl. 15.12 .2005; Byul. № 11.

5. 5. R. Chubyk, Optimal ruling system of electromagnetic vibrodrive of adaptive vibrational technological machines. Proceedings of the 8th international conference “VIBROENGINEERING 2009”, Klaipeda University, Lithuania, 2009, Pages 10-14.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3