SIMULATION OF FATIGUE CRACK GROWTH DURING TRANSVERSE VIBRATIONS OF A TURBINE SHAFT

Author:

Bovsunovsky Anatoliy1,Nosal Oleksandr1

Affiliation:

1. Kyiv Polytechnic Institute named after Igor Sikorsky

Abstract

In real operational conditions structural elements of steam turbines are subjected to a wide range of thermal and mechanical loading. Even substantial reserve of static and dynamic strength, laid down at the stage of turbine design, can not prevent the appearance of fatigue cracks in structural elements, which lead to catastrophic failures. One of the reasons of damage in structural elements of turbine is technological operations used in the process of manufacture (forging, turning, and milling, heat treatment), since they are accompanied with plastic deformation of material, which is the physical basis of the so-called distributed fatigue damage. It accumulates during long-term cyclic deformation and turns into local damage of a fatigue crack type. In addition, the appearance of cracks in turbine shafts is caused by complex geometry, that is, by the presence of fillets and grooves, which are stress concentrators and, therefore, potential areas of initiation and growth of fatigue cracks. The high pressure rotor of the K-200-130 steam turbine was used to simulate the process of crack growth at forced transverse vibrations of the rotor when it passes through the first critical speed. At this the amplitude-dependent energy dissipation typical for metallic materials was taken into account. There was estimated the maximum stresses arising in the rotor when it passed through the critical speed rotation and the number of loading cycles leading to the crack growth. It was assumed that a crack with a depth of about 1 mm has formed on the surface of the rotor, which is the maximum permissible depth according to the instructions for safe operation of the turbine. The growth rate of this crack is predicted based on the fracture mechanics approaches through the determined maximum stresses in the section with a crack and experimental dependences of the crack growth rate on the stress intensity factor range. Based on the model, the crack growth time is predicted until the rotor loses its bearing ability. Predictions are made for different scenarios of loading and mechanical properties of rotor steel.

Publisher

Vinnytsia National Agrarian University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3