Assessment of Spatial and Temporal Variation of Potential Evapotranspiration Estimated by Four Methods for South Carolina

Author:

Amatya Devendra M.,Muwamba Augustine,Panda Sudhanshu,Callahan Timothy,Harder Scott,Pellett C. Alex

Abstract

Given South Carolina’s ongoing water planning efforts, in this study, we evaluated seasonal and annual potential evapotranspiration (PET) using measured Class A pan evaporation (PE) and 3 widely used estimation methods for the state with 3 distinct physiographic regions (Coastal, Piedmont, and Mountain). The methods were temperature-based Hargreaves-Samani (H-S), radiation-based Priestley-Taylor (P-T), and process-based Penman-Monteith (P-M). The objectives of the study were to (a) describe seasonal and temporal distribution of PET by all methods, (b) quantify differences among PET methods, and (c) identify relationships between monthly PE and estimated PET by each method. Daily weather variables from 59 National Oceanic and Atmospheric Administration weather stations distributed in the 3 regions of South Carolina (SC) were used to estimate daily PET for an 18-year period (1998–2015). Net radiation was estimated using modeled solar radiation values for weather stations. The average annual H-S PET values adjusted with the empirical radiation factor (KT) and the average annual P-T PET values for 1998–2015 were 1,232 ± 9, 1,202 ± 11, and 1,115 ± 10 mm and 1,179 ± 10, 1,137 ± 11, and 1,082 ± 11 mm, respectively, for the Coastal, Piedmont, and Mountain regions. Both the mean annual H-S and P-T PET for the Mountain region were significantly (α = 0.05) lower than for the Coastal and Piedmont regions. The mean annual P-T PET for the Coastal region was significantly (α = 0.05) greater than that for the Piedmont. Regional differences showed that estimated PET for 1998-2015 was greatest in the Coastal and lowest in the Mountain region. Comparison of all 3 methods using only common 8-year data showed mean annual P-M PET, varying from 1,142 mm in the Piedmont to 1,270 mm in the Coastal region, was significantly higher than both the H-S and P-T PET in both regions. The greatest mean monthly H-S and P-T PET values were observed in June and July. Statistical evaluation using Nash–Sutcliffe efficiency and percent bias showed a slightly better agreement of H-S PET with both the measured PE as well as the P-M method, followed by the P-T. However, the P-T method yielded a close to unity slope and slightly higher R2 than the H-S PET when compared with the PE. The P-T PET method that uses both the temperature and radiation data may be preferred for SC with a humid climate dominated by forest land use, given more rigorous ground-truthing of modeled solar radiation as data become available. Surface interpolation algorithm, inverse distance weighted, was used to spatially map both the distributed H-S and P-T PET for the state. Results from this study can be used to support several components of the ongoing water planning efforts in SC.

Publisher

Clemson University

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3