Modelling of an Additive 3D-Printing Process Based on Design of Experiments Methodology

Author:

Eguren José AlbertoORCID,Esnaola AritzORCID,Unzueta GorkaORCID

Abstract

<p><strong>Purpose:</strong> The implementation of additive manufacturing (AM) or 3D-printer manufacturing for technical prototyping, preproduction series and short production series can bring benefits in terms of reducing cost and time to market in product development. These technologies are beginning to be applied in different industrial sectors and have a great possibility of development. As these technologies are still in development, there is a need to define the capacity of the 3D machines to establish minimum standards for producing high-quality parts.</p><p><strong>Methodology/Approach:</strong> The proposed methodology is based on a design of experiments (DOE) approach, which serves as a guide for engineers when it comes to executing any experimental study. The following steps were followed (Unzueta et al., 2019): Phase 1: define; Phase 2: measure; Phase 3: plan; Phase 4: execute experimentation; Phase 5: analyse the results; Phase 6: improve via confirmation experiments; Phases 7-8: control and standardise.</p><p><strong>Findings:</strong> The proposed methodology is based on a design of experiments (DOE) approach, which serves as a guide for engineers when it comes to executing any experimental study. The following steps were followed (Unzueta et al., 2019): Phase 1: define; Phase 2: measure; Phase 3: plan; Phase 4: execute experimentation; Phase 5: analyse the results; Phase 6: improve via confirmation experiments; Phases 7-8: control and standardise.</p><strong>Originality/Value of paper:</strong> This study uses a methodological approach to demonstrate how the 3D printing technology can be enriched with statistical testing techniques (DOE). It defines numerical prediction models to obtain high-quality parts with a new AM technology, using a planning process with a minimum amount of experimentation.

Publisher

Technical University of Kosice, Faculty of Materials, Metallurgy and Recycling

Subject

Management of Technology and Innovation,Strategy and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3