EFFECTS OF CRYOGENIC TREATMENT ON MICROSTRUCTURE AND WEAR RESISTANCE OF Fe-0.35C-6.3Cr MARTENSITIC STEEL

Author:

Sehri Masoud,Ghayour Hamid,Amini Kamran,Naseri Masaab,Rastegari Habib,Javaeri Vahid

Abstract

The study is conducted to determine the effect of quenching and tempering processes on microstructural evolutions and abrasive properties of medium carbon-high chromium steel. For this purpose, Austenitizing was performed at the temperatures of 1000 °C for 15 min followed by oil quenching. To determine the optimum tempering temperature, tempering temperatures were selected in the temperature ranges of 350-550°C. The samples cryogenically treated immediately after quenching in liquid nitrogen (-196°C) for 24 hrs. Dry sand/rubber wheel test was used to evaluate the wear resistance properties. Microstructural observation, fractography and retain austenite was evaluated by optical and scanning electron microscopy and X-ray diffraction analysis. The results show that the best wear resistance can be obtained at the tempering temperature of 500°C, due to the reduction of a tendency to micro-cracking, decrease in internal stresses and improvement of impact energy. Observation of the worn surfaces revealed that the wear mechanisms after tempering at 450°C are a combination of abrasive, adhesive and fatigue wear. However, abrasive wear is the only active wear mechanism for specimen tempered at 500°C. In addition, wear resistance of deep cryogenically treated sample was significantly increased (about 25%) by the removal of retained austenite and formation of uniform fine carbides distribution in the matrix.

Publisher

SciCell

Subject

Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3