G protein- and β-arrestin Signaling Profiles of Endothelin Derivatives at the Type A Endothelin Receptor

Author:

Xiong Xinyu,Nazo Nour,Revoori Ritika,Rajagopal Sudarshan,Sparks Matthew A.ORCID

Abstract

AbstractBackgroundEndothelin-1 (ET-1) is a potent vasoconstrictor in the cardiovascular system, an effect mediated through the type A endothelin receptor (ETAR), a G protein-coupled receptor (GPCR). Antagonists of the ETAR have shown promising results in randomized clinical trials. However, side effects limit widespread use. Biased agonists have been developed to mitigate the untoward effects of a number of GPCR antagonists. These agents block deleterious G-coupled pathways while stimulating protective β-arrestin pathways. The goal of this study was to test whether there was any significant ligand bias between endothelin derivatives, and whether this could have any physiologic effects in the cardiovascular system.MethodsA panel of endothelin derivatives were tested in assays of G protein signaling and β-arrestin 2 recruitment at the ETAR. We then tested the effects of ET-1 on the vasopressor response in wild-type and β-arrestin 1 and 2 KO mice.ResultsWe found the endothelins activated a wide range of G proteins at the ETAR, but none of the endothelin derivatives demonstrated significant biased agonism. Endothelin derivatives did display structure-activity relationships with regards to their degrees of agonism. β-arrestin 1 and 2 knockout mice did not display any differences to wild-type mice in the acute pressor response to ET-1, and β-arrestin 2 knockout mice did not display any blood pressure differences to wild-type mice in the chronic responses to ET-1.ConclusionsOur findings are consistent with vasoconstriction being mediated by G proteins with a lack of significant desensitization by β-arrestins at the ETAR. These findings suggest that G protein– and β-arrestin–biased ETAR agonists could have distinct physiologic effects from balanced agonists, although the endothelin peptide scaffold does not appear suitable for designing such ligands.

Funder

National Institutes of Health

Publisher

American Society of Nephrology (ASN)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3