Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD

Author:

Chevalier Robert L.

Abstract

There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in Homo sapiens enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.

Publisher

American Society of Nephrology (ASN)

Subject

General Medicine

Reference148 articles.

1. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis

2. Changes in the US burden of chronic kidney disease from 2002 to 2016: An analysis of the global burden of disease study;Bowe;JAMA Netw Open,2018

3. Centers for Disease Control and Prevention: Chronic Kidney Disease (CKD) Surveillance System, Prevalence of CKD by age (adults). 2018. Available at: https://nccd.cdc.gov/CKD/detail.aspx?QNum=Q9&Strat=Age. Accessed July 15, 2020

4. United States Renal Data System (USRDS): Chapter 6: CKD among children and adolescents, Table 6.1 Demographic characteristics of Optum Clinformatics pediatric patients, 2016. In: 2018 USRDS annual data report: Epidemiology of kidney disease in the United States, Chronic Kidney Disease in the United States, Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2018. Available at: https://www.usrds.org/2018/view/v1_06.aspx. Accessed July 15, 2020

5. Glomeruli and Blood Pressure: Less of One, More the Other?

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3