Energy Metabolism Dysregulation in Chronic Kidney Disease

Author:

Li Ying12,Gu Wanjun3ORCID,Hepokoski Mark23,Pham Hai12,Tham Rick12,Kim Young Chul12ORCID,Simonson Tatum S.3,Singh Prabhleen12ORCID

Affiliation:

1. Division of Nephrology and Hypertension, University of California San Diego, San Diego, California

2. VA San Diego Healthcare System, San Diego, California

3. Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, California

Abstract

Key Points There is significant enrichment in metabolic pathways in early stages in the subtotal nephrectomy model of CKD.Proximal tubular mitochondrial respiration is suppressed likely from mitochondrial dysfunction in substrate utilization and ATP synthesis.There is significant suppression of pyruvate dehydrogenase and increased glycolysis in proximal tubules. Background CKD is a significant contributor to morbidity and mortality. A better understanding of mechanisms underlying CKD progression is indispensable for developing effective therapies. Toward this goal, we addressed specific gaps in knowledge regarding tubular metabolism in the pathogenesis of CKD using the subtotal nephrectomy (STN) model in mice. Methods Weight- and age‐matched male 129X1/SvJ mice underwent sham or STN surgeries. We conducted serial GFR and hemodynamic measurements up to 16 weeks after sham and STN surgery and established the 4-week time point for subsequent studies. Results For a comprehensive assessment of renal metabolism, we conducted transcriptomic analyses, which showed significant enrichment of pathways involved in fatty acid metabolism, gluconeogenesis, glycolysis, and mitochondrial metabolism in STN kidneys. Expression of rate-limiting fatty acid oxidation and glycolytic enzymes was increased in STN kidneys, and proximal tubules in STN kidneys exhibited increased functional glycolysis but decreased mitochondrial respiration, despite an increase in mitochondrial biogenesis. Assessment of the pyruvate dehydrogenase complex pathway showed significant suppression of pyruvate dehydrogenase, suggesting decreased provision of acetyl CoA from pyruvate for the citric acid cycle to fuel mitochondrial respiration. Conclusion Metabolic pathways are significantly altered in response to kidney injury and may play an important role in the disease progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3