Machine Learning for Prediction of Patients on Hemodialysis with an Undetected SARS-CoV-2 Infection

Author:

Monaghan Caitlin K.,Larkin John W.ORCID,Chaudhuri Sheetal,Han Hao,Jiao Yue,Bermudez Kristine M.,Weinhandl Eric D.,Dahne-Steuber Ines A.,Belmonte Kathleen,Neri Luca,Kotanko Peter,Kooman Jeroen P.,Hymes Jeffrey L.,Kossmann Robert J.,Usvyat Len A.,Maddux Franklin W.

Abstract

BackgroundWe developed a machine learning (ML) model that predicts the risk of a patient on hemodialysis (HD) having an undetected SARS-CoV-2 infection that is identified after the following ≥3 days.MethodsAs part of a healthcare operations effort, we used patient data from a national network of dialysis clinics (February–September 2020) to develop an ML model (XGBoost) that uses 81 variables to predict the likelihood of an adult patient on HD having an undetected SARS-CoV-2 infection that is identified in the subsequent ≥3 days. We used a 60%:20%:20% randomized split of COVID-19–positive samples for the training, validation, and testing datasets.ResultsWe used a select cohort of 40,490 patients on HD to build the ML model (11,166 patients who were COVID-19 positive and 29,324 patients who were unaffected controls). The prevalence of COVID-19 in the cohort (28% COVID-19 positive) was by design higher than the HD population. The prevalence of COVID-19 was set to 10% in the testing dataset to estimate the prevalence observed in the national HD population. The threshold for classifying observations as positive or negative was set at 0.80 to minimize false positives. Precision for the model was 0.52, the recall was 0.07, and the lift was 5.3 in the testing dataset. Area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for the model was 0.68 and 0.24 in the testing dataset, respectively. Top predictors of a patient on HD having a SARS-CoV-2 infection were the change in interdialytic weight gain from the previous month, mean pre-HD body temperature in the prior week, and the change in post-HD heart rate from the previous month.ConclusionsThe developed ML model appears suitable for predicting patients on HD at risk of having COVID-19 at least 3 days before there would be a clinical suspicion of the disease.

Funder

Fresenius Medical Care

Publisher

American Society of Nephrology (ASN)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3