A new local stochastic method for predicting data with spatial heterogeneity

Author:

Silva Anderson Rodrigo daORCID,Silva Ana Paula Alencastro,Tiago Neto Lauro Joaquim

Abstract

Spatial data (e.g., phytopathogenic data) do not always meet assumptions such as stationarity, isotropy and Gaussian distribution, thereby requiring complex spatial methods and models. Some deterministic assumption-free methods such as the inverse distance weighting can also be applied to predict spatial data, but their output is limited for graphical solutions (mapping). We adapted a computer-based prediction method called Circular Variable Radius Moving Window (CVRMW) that is based on two others: moving window kriging (MWK) and inverse squared-distance weighting (ISDW). The algorithm is developed to meet an objective function that minimizes the index of variation of the spatial observations inside the moving window. A code in R language is presented and thoroughly described. The outputs include the range of the spatial dependence as the radius calculated at every target location and the standard error of the predicted values, mapped to provide a useful tool for spatial exploratory analysis. The method does not make any assumptions about the spatial process, and it is an alternative for dealing with spatial heterogeneity.

Publisher

Universidade Estadual de Maringa

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3