Conilon coffee outturn index: a precise alternative for estimating grain yield
-
Published:2022-03-09
Issue:
Volume:44
Page:e54249
-
ISSN:1807-8621
-
Container-title:Acta Scientiarum. Agronomy
-
language:
-
Short-container-title:Acta Sci. Agron.
Author:
Fialho Gustavo SessaORCID, Fonseca Aymbiré Francisco Almeida da, Ferrão Maria Amélia Gava, Ferrão Romário Gava, Olivoto Tiago, Nardino Maicon, Reis Edvaldo Fialho dos, Sakiyama Ney Sussumu
Abstract
Coffee outturn can be defined as the ratio between the harvested coffee and its respective processed grains. This character is greatly influenced by genotypic and environmental effects, and in breeding programs your analysis is costly and time-consuming. In this sense, the use of an outturn index to estimate coffee yield on experimental plots is a desirable measure aiming at reducing resources and time in postharvest evaluations. Thus, the present study aimed to evaluate the accuracy of the use of an outturn index equal to 4.0, in the estimation of Conilon coffee grains production. This index indicates that four kilograms of harvested fruit would be needed to obtain one kilogram of processed grains. Based on the average of 157 genotypes conducted in three trials and four harvests, we evaluated the relationship between harvested fruits and processed grains (FcBe), the observed (OGY), and the estimated grain yield per plant (EGY) based on FcBe equal to 4.0 (an outturn index). Descriptive statistics, adequation test for EGY, and the coincidence of occurrence of genotypes observations relating to the top 20% of all observations of OGY and EGY. In the estimation of grain yield in Conilon, the use of FcBe equal to 4.0 showed high precision in the average of the analyzed trials. However, further studies should be conducted to elucidate the effects of climate variables on the yield of Conilon coffee, especially in atypical crop years. Thus, the use of an outturn index becomes interesting in cases where the number of genotypes to be evaluated is very large and a screening of the promising ones is desirable.
Publisher
Universidade Estadual de Maringa
Subject
Agronomy and Crop Science
Reference18 articles.
1. Erlacher, W. A., Oliveira, F. L., Fialho, G. S., Silva, D. M. N., & Carvalho, A. H. O. (2016). Models for estimating yacon leaf área. Horticultura Brasileira, 34(3), 422-427. DOI: https://doi.org/10.1590/S0102-05362016003019 2. Ferrão, R. G., Cruz, C. D., Ferreira, A., Cecon, P. R., Ferrão, M. A. G., Fonseca, A. F. A., ... Silva, M. F. (2008). Parâmetros genéticos em café conilon. Pesquisa Agropecuária Brasileira, 43(1), 61-69. DOI: https://doi.org/10.1590/S0100-204X2008000100009 3. Ferrão, R. G., Ferrão, M. A. G., Fonseca, A. F. A., Volpi, P. S., Verdin Filho, A. C., Pacova, B. E. V., & Ferrão, L. F. V. (2019b). Coffea canephora breeding. In R. G. Ferrão, A. F. A. Fonseca, M. A. G. Ferrão, & L. H. De Muner (Eds.), Conilon coffee (p. 145-202). Vitória, ES: Incaper. 4. Ferrão, R. G., Fonseca, A. F. A., Ferrão, M. A. G., & De Muner, L. H. (2019a). Conilon coffee. Vitória, ES: Incaper. 5. Fialho, G. S., Dalvi, L. P., Dalvi, N. B. C., Kuhlcamp, K. T., & Effgen, E. M. (2011). Predição da área foliar em abobrinha-italiana: um método não destrutivo, exato, simples, rápido e prático. Revista Brasileira de Agropecuária Sustentável, 1(2), 59-63. DOI: https://doi.org/10.21206/rbas.v1i2.39
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|