Abstract
To be considered drought-tolerant, a tomato cultivar is required to present some level of tolerance at all developmental stages of plant growth. Since drought tolerance is a stage-specific phenomenon, genotype assessment must be performed separately at all developmental stages. In this study, we used a multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP index) to properly rank 49 tomato genotypes according to their tolerance to drought stress conditions at germination and seedling stages. Seeds of 47 introgression lines, which cultivar M82 is considered drought-sensitive, and the Solanum pennellii wild accession LA 716, which is considered drought-tolerant, were subjected to a control condition, where seeds were soaked in distilled water, and a drought condition, where seeds were soaked in a polyethylene glycol (PEG) solution (-0.3 MPa). Drought stress, induced by PEG, had a significant impact on all nine germination and growth performance-related traits; there was a reduction in shoot length (SL), total length (TL), initial germination percentage (IGP), final germination percentage (FGP), germination velocity index (GVI), and germination rate (GR). In contrast, the root-to-shoot ratio (R/S) and time to reach 50% germination (T50) increased under drought stress. Root length (RL) was less affected by drought, and in some genotypes, it was even increased. As expected, LA 716 ranked closest to the drought tolerance ideotype. IL 1-4-18, IL 2-3, IL 1-2, IL 9-2, and IL 10-1 were the most drought-tolerant at the germination stage. These results will serve as guidance for breeders who are aiming at developing drought-resistant tomato cultivars.
Publisher
Universidade Estadual de Maringa
Subject
Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献