Abstract
In this work, lacunarity analysis is performed on soil pores segmented by the pure voxel extraction method from soil tomography images. The conversion of forest to sugarcane plantation was found to result in higher sugarcane soil pore lacunarity than that of native forest soil, while the porosity was found to be lower. More precisely, this study shows that native forest has more porous soil with a more uniform spatial distribution of pores, while sugarcane soil has lower porosity and a more heterogeneous pore distribution. Moreover, validation through multivariate statistics demonstrates that lacunarity can be considered a relevant index of clustering and can explain the variability among soils under different land use systems. While porosity by itself represents a fundamental concept for quantification of the impact of land use change, the current findings demonstrate that the spatial distribution of pores also plays an important role and that pore lacunarity can be adopted as a complementary tool in studies directed at quantifying the effect of human intervention on soils.
Publisher
Universidade Estadual de Maringa
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献