Abstract
Monosporascus cannonballus Pollack & Uecker and Macrophomina phaseolina Tassi (Goid) are phytopathogenic fungi responsible for causing "root rot and vine decline" in melon (Cucumis melo L.). Currently, cultural management practices are predominantly employed to control these pathogens, as the use of pesticides not only has detrimental environmental impacts but has also proven ineffective against them. These fungi have already undergone molecular characterization, and their genomes are now available, enabling the targeted search for protein targets. Therefore, this study aimed to identify novel target proteins that can serve as a foundation for the development of fungicides for effectively managing these pathogens. The genomes of M. cannonballus (assembly ASM415492v1) and M. phaseolina (assembly ASM2087553v1) were subjected to comprehensive analysis, filtration, and comparison. The proteomes of both fungi were clustered based on functional criteria, including putative and hypothetical functions, cell localization, and function-structure relationships. The selection process for homologs in the fungal genomes included a structural search. In the case of M. cannonballus, a total of 17,518 proteins were re-annotated, and among them, 13 candidate targets were identified. As for M. phaseolina, 30,226 initial proteins were analyzed, leading to the identification of 10 potential target proteins. This study thus provides new insights into the molecular functions of these potential targets, with the further validation of inhibitors through experimental methods holding promise for expanding our knowledge in this area.
Publisher
Universidade Estadual de Maringa