Image analysis of seeds and machine learning as a tool for distinguishing populations: Applied to an invasive tree species

Author:

Felix Francival CardosoORCID,Chagas Kyvia Pontes Teixeira dasORCID,Araújo Fernando dos SantosORCID,Medeiros Josenilda Aprigio Dantas deORCID,Vieira Fábio de AlmeidaORCID,Torres Salvador BarrosORCID,Pacheco Mauro VasconcelosORCID

Abstract

Invasive species threaten crops and ecosystems worldwide. Therefore, we sought to understand the relationship between the geographic distribution of species populations and the characteristics of seeds using new techniques such as seed image analysis, multivariate analysis, and machine learning. This study aimed to characterize Leucaena leucocephala (Lam.) de Wit. seeds from spatially dispersed populations using digital images and analyzed their implications for genetic studies. Seed size and shape descriptors were obtained using image analysis of the five populations. Several analyses were performed including descriptive statistics, principal components, Euclidean distance, Mantel correlation test, and supervised machine learning. This image analysis technique proved to be efficient in detecting biometric differences in L. leucocephala seeds from spatially dispersed populations. This method revealed that spatially dispersed L. leucocephala populations had different biometric seed patterns that can be used in studies of population genetic divergence. We observed that it is possible to identify the origin of the seeds from the biometric characters with 80.4% accuracy (Kappa statistic 0.755) when we applied the decision tree algorithm. Digital imaging analysis associated with machine learning is promising for discriminating forest tree populations, supporting management activities, and studying population genetic divergence. This technique contributes to the understanding of genotype-environment interactions and consequently identifies the ability of an invasive species to spread in a new area, making it possible to track and monitor the flow of seeds between populations and other sites.

Publisher

Universidade Estadual de Maringa

Reference54 articles.

1. Alfaro-Solís, J.D., Montoya-Arroyo, A., Jiménez, V.M., Arnaez-Serrano, E., Pérez, J., Vetter, W., Frank, J., & Lewandowski, I. (2020). Acrocomia aculeata fruits from three regions in Costa Rica: An assessment of biometric parameters, oil content and oil fatty acid composition to evaluate industrial potential. Agroforestry Systems, 94(1), 1913-1927. DOI: https://doi.org/10.1007/s10457-020-00511-8

2. Azuara-Morales, I., López-Ortiz, S., Jarillo-Rodríguez, J., Pérez-Hernández, P., Ortega-Jiménez, E., & Castillo-Gallegos, E. (2020). Forage availability in a silvopastoral system having different densities of Leucaena leucocephala under Voisin grazing management. Agroforestry Systems, 94(1), 1701-1711. DOI: https://doi.org/10.1007/s10457-020-00487-5

3. Bacchetta, G., Grillo, O., Mattana, E., & Venora, G. (2008). Morpho-colorimetric characterization by image analysis to identify diaspores of wild plant species. Flora - Morphology, Distribution, Functional Ecology of Plants, 203(8), 669-682. DOI: https://doi.org/10.1016/j.flora.2007.11.004

4. Bao, F., & Bambil, D. (2021). Applicability of computer vision in seed identification: deep learning, random forest, and support vector machine classification algorithms. Acta Botanica Brasilica, 35(1), 17-21. DOI: https://doi.org/10.1590/0102-33062020abb0361

5. Barros, V., Melo, A., Santos, M., Nogueira, L., Frosi, G., & Santos, M.G. (2020). Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry, 147(1), 181-190. DOI: https://doi.org/10.1016/j.plaphy.2019.12.018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3