Comparison between CFD simulation and affinity laws and analysis of the degree of reaction.

Author:

Rosa Henrique Marcio PereiraORCID,Brito Rogério FernandesORCID,Tibiriça Álvaro Messias Bigonha,Campos Júlio Cesar Costa,Chohfi Felipe Moreton

Abstract

Computational Fluid Dynamics (CFD) is a modern technology used to study fluid flow. Experimental methods for predicting the turbomachinery performance involve greater time consumption and financial resources compared to the CFD approach. For the centrifugal pump the impeller is the main component, as it transfers energy to the fluid. The pump flow rate and the total head are directly associated with the impeller rotation speed. The purpose of this paper is to present the analysis and comparison of numerical simulation results using Computational Fluid Dynamics of a centrifugal pump impeller under three different rotation speeds: 3500 rpm (nominal), 3100 rpm and 2700 rpm. The software used was ANSYS-CFX®, the turbulence model adopted was the Shear Stress Transport (SST). Eight operating points were simulated for each rotation. The simulation provided the characteristic curves, pressure distribution, and total and static pressure at the inlet and the outlet of the impeller. The degree of reaction was calculated. The results were compared by application of affinity laws, and showed agreement with them. The results also showed that the degree of reaction increased with increasing flow rate, and it was coherent with the backward curved blade impeller. The simulations show that the energy portions that make up the total energy transferred by the impeller agree with the affinity laws.

Publisher

Universidade Estadual de Maringa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3