The diabacare cloud: predicting diabetes using machine learning

Author:

Alam MehtabORCID,Khan Ihtiram Raza,Alam Mohammad Afshar,Siddiqui Farheen,Tanweer Safdar

Abstract

Machine learning (ML) is the buzz all around the technology industry and is illuminating each and every sector of human lives, be it, healthcare, finance, bioinformatics, data science, mechanical engineering, agriculture or even smart cities nowadays. ML consists of supervised and unsupervised techniques. Due to the availability of data in abundance, supervised ML has been the most preferred method in the field of data mining. In this research paper, a publicly available dataset for diabetes detection is tested to understand the efficiency of classification of a number of supervised ML algorithms to find the most accurate model. The dataset consisted of data of 768 persons out of which 500 were control and 268 were patients we found that the Random Forest algorithm outperformed the other 6 classification algorithm. In the first iteration, the Random Forest algorithm reached 78.44% accuracy. The tweaks performed in the paper outclassed the original random forest algorithm with a difference of 1.08% reaching a score of 79.52%. Further, iteration I gave 171 whilst iteration II gave 173 correct predictions out of the total 218 test data.

Publisher

Universidade Estadual de Maringa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3