An integrated exploration of heat kernel invariant feature and manifolding technique for 3D object recognition system

Author:

Usha SubramaniamORCID,Karthik Murugesan,Jothibasu Marappan,Gowtham Vijayaragavan

Abstract

Spectral Graph theory has been utilized frequently in the field of Computer Vision and Pattern Recognition to address challenges in the field of Image Segmentation and Image Classification. In the proposed method, for classification techniques, the associated graph's Eigen values and Eigen vectors of the adjacency matrix or Laplacian matrix  created from the images are employed. The Laplacian spectrum and a graph's heat kernel are inextricably linked. Exponentiating the Laplacian eigensystem over time yields the heat kernel, which is the solution to the heat equations. In the proposed technique K-Nearest neighborhood and Delaunay triangulation techniques are used to generate a graph from the 3D model. The graph is then represented into Normalized Laplacian (NL) and Laplacian matrix (L). From each Normalized Laplacian and Laplacian matrix, the feature vectors like Heat Content Invariant and Laplacian Eigen values are extracted. Then, using all of the available clustering algorithms on datasets, the optimum feature vector for clustering is determined. For clustering various manifolding techniques are employed.  In the suggested method, the graph heat kernel is constructed using industry-standard objects which are taken from the Engineering bench mark Data set.

Publisher

Universidade Estadual de Maringa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3