Premature ventricular contraction recognition using blind source separation and ensemble gaussian naive bayes weighted by analytic hierarchy process

Author:

Oliveira Bruno Rodrigues deORCID,Duarte Marco Aparecido QueirozORCID,Vieira Filho JozueORCID

Abstract

Premature Ventricular Contractions (PVC) arrhythmias can be associated with sudden death and acute myocardial infarction, occurring in 50% of the population for Holter monitoring. PVC patterns are very hard to be recognized since their waveforms can be confused with other heartbeats, such as Right and Left Bundle Branch Blocks. This work proposes a new approach for PVC recognition, based on Gaussian Naive Bayes algorithm and AMUSE (Algorithm for Multiple Unknown Signal Extraction), which is a method for the blind source separation problem. This approach provides a set of attributes that are combined by Linear Discriminant Analysis, allowing the training of an ensemble learning. The Analytic Hierarchy Process weights each learned model according to its importance, obtained from the performance metrics. This approach has some advantages over baseline methods since it does not use a pre-processing stage and employs a simple machine learning model trained using only two parameters for each feature. Using a standard dataset for training and test phases, the proposed approach achieves 98.75% accuracy, 90.65% sensitivity, and 99.46% specificity. The best performance was 99.57% accuracy, 98.64% sensitivity, and 99.65% specificity for other datasets. In general, the proposed approach is better than 66% of the state-of-the-art methods concerning accuracy

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Reference1 articles.

1. .

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3