Generalized ridge estimators adapted in structural equation models

Author:

Pereira Gislene AraujoORCID,Resende MarianaORCID,Cirillo Marcelo ÂngeloORCID

Abstract

Multicollinearity is detected via regression models, where independent variables are strongly correlated. Since they entail linear relations between observed or latent variables, the structural equation models (SEM) are subject to the multicollinearity effect, whose numerous consequences include the singularity between the inverse matrices used in estimation methods. Given to this behavior, it is natural to understand that the suitability of these estimators to structural equation models show the same features, either in the simulation results that validate the estimators in different multicollinearity degrees, or in their application to real data. Due to the multicollinearity overview arose from the fact that the matrices inversion is impracticable, the usage of numerical procedures demanded by the maximum likelihood methods leads to numerical singularity problems. An alternative could be the use of the Partial Least Squares (PLS) method, however, it is demanded that the observed variables are built by assuming a positive correlation with the latent variable. Thus, theoretically, it is expected that the load signals are positive, however, there are no restrictions to these signals in the algorithms used in the PLS method. This fact implies in corrective areas, such as the observed variables removal or new formulations of the theoretical model. In view of this problem, this paper aimed to propose adaptations of six generalized ridge estimators as alternative methods to estimate SEM parameters. The conclusion is that the evaluated estimators presented the same performance in terms of accuracy, precision while considering the scenarios represented by model without specification error and model with specification error, different levels of multicollinearity and sample sizes.

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3