An empirical research and comparative analysis of clustering performance for processing categorical and numerical data extracts from social media

Author:

Renjith Shini,Sreekumar A.,Jathavedan M.

Abstract

Social media has significantly influenced modern lifestyle and the way in which most of the industries operate their business. Social media data refers to the contents created by users during their social interactions in the form of text, sound, visuals, etc. It has now evolved as the major source of information for different industry verticals like retail, marketing, advertising, tourism, hospitality, education, etc. The huge volume of data resulted in the necessity for better and efficient procedures for personalized information retrieval. Traditional data mining and information retrieval techniques based on content-based and/or collaborative filtering proved computationally costly and less scalable against the volume it must deal with. Adoption of clustering techniques is a potential solution for this problem as it can minimize the amount of data required to be managed in industrial applications like recommender systems. This empirical research focuses on evaluating multiple clustering algorithms with the goal of finding an ideal solution for clustering numerical data extracted from social media sources. Three different publicly available datasets with varying number of attributes and records from tourism domain are used for the experiments conducted as part of this work

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3