Fault current and fault voltage analysis of power transmission systems with high penetration of inverter-based wind generators

Author:

Davi Moisés Junior Batista BorgesORCID,Jorge David CalhauORCID,Lopes Felipe VigolvinoORCID

Abstract

This paper highlights the evolution of wind power sources in the modern energy scenario, emphasizing the impacts of inverter-based generators, namely Full-Converter and DFIG (Doubly-Fed Induction Generator), on fault currents and fault voltages in transmission systems. The studies were carried out through computer simulations, with an EMTP (Electromagnetic Transients Program) type software. A power system with high penetration of such renewable generations was modeled and several contingency scenarios were simulated in a transmission line that performs the connection of the wind power plant to the grid. The scenarios included the variation of parameters such as fault type, inception instant angles, resistance, and distance, to explore the main differences between the contributions to the fault of a wind power plant and conventional generation. Among the atypical analyzed characteristics, the following can be highlighted: the absence of the DC (Direct Current) component for Full-Converter generation, independent of fault inception instant angle and distance variation; low levels of the fault contributions at the wind power plant terminal; low levels of voltages at the wind power plant terminal, evidencing the high SIR (Source Impedance Ratio) characteristic of these generations; atypical relations between the fault resistance and measured currents; and others. The obtained results show the importance of further studies on the impacts of inverter-based generations on fault currents and voltages, allowing developments that are able to improve control and protection systems for grids with high penetration of this wind generation topologies

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3