Adsorption of Cd (II), Pb (II) and Cr (III) on chemically modified Euterpe Oleracea biomass for the remediation of water pollution

Author:

Gonçalves Junior Affonso Celso,Schwantes Daniel,Conradi Junior Elio,Zimmermann Juliano,Coelho Gustavo Ferreira

Abstract

This study evaluated the use of Euterpe oleracea endocarp after chemical modification with H2O2, H2SO4 and NaOH for the removal of Cd2+, Pb2+ and Cr3+ from water. Therefore, the adsorbent was characterized for its chemical composition, Fourier Transform Infrared (FTIR) analysis, Scanning Electron Microscope (SEM) images, and pH of point of zero charge (pHPZC), thermal stability and porosimetry. Adsorption tests were conducted by using a Central Composite Design (CCD). Pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models evaluated the adsorption kinetics, and sorption isotherms were linearized according to Langmuir, Freundlich and Dubinin-Radushkevich. The effect of initial concentration, temperature in the process and the desorption were also analyzed. SEM results showed that the açaí adsorbents (or CA) had irregular and heterogeneous structure, and IR analysis evidenced the presence of hydroxyl, aliphatic, phenolic and carboxylic surface groups; both analyses indicate favorable adsorption characteristics. The pHPZC of the adsorbent is 4.41, 4.02 and 7.10 for CA modified with H2O2, H2SO4 and NaOH, respectively. The optimum adsorption conditions were pH 5.0, within 40 min, with 4 g L-1 as the ideal adsorbent dose. The predominance of chemisorption occurs, in mono and multilayer. The adsorption is only spontaneous for Cd2+ at 15 and 25°C. The CA has the potential to increase the removal efficiency of Cd, Pb and Cr, when chemically modified, particularly with H2O2 and H2SO4.

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3