Data Mining Algorithm Testing For SAND Metaverse Forecasting

Author:

Julianto Indri Tri,Kurniadi Dede,Nashrulloh Muhammad Rikza,Mulyani Asri

Abstract

Metaverse is a technology that allows us to buy virtual land. In the future life in the real world can be duplicated into the Metaverse to increase efficiency, effectiveness, and a world without being limited by space and time. To buy land in the Metaverse, one can be done by using SAND. SAND is a crypto asset from a game called The Sandbox which functions as a transaction tool where in that game we can buy land and build it for various purposes just like we can store our Non-Fungible Tokens there. Metaverse is a digital business that will promise in the future because it offers easy and fast transactions. This study aims to compare the exact algorithm for making predictions about the SAND cryptocurrency used to buy Metaverse land. 7 algorithms are being compared, namely Deep Learning, Linear Regression, Neural Networks, Support Vector Machines, Generalized Linear Models, Gaussian Process, and K-Nearest Neighbors. The research method used is Knowledge Discovery in Databases. The research results show that the Support Vector Machines Algorithm has the most optimal Root Means Square Error value, root_mean_squared_error: 0.022 +/- 0.062 (micro average: 0.062 +/- 0.000). Based on this comparison, the Support Vector Machines Algorithm is suitable for predicting SAND Metaverse prices.

Publisher

Universitas Dian Nuswantoro

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analysis of the consumer profile and the willingness to pay in immersive virtual tourism;Journal of Destination Marketing & Management;2024-09

2. Price Prediction of Non-Fungible Tokens (NFTs) using Data Mining Prediction Algorithm;2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE);2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3