Quantitative analysis of olfactory vocabulary based on the example of Russian, English and German languages

Author:

Bukreeva L. A.1,Velis L. A.2

Affiliation:

1. St. Petersburg State University

2. Pyatigorsk State University

Abstract

In this research work, an analysis of collocations associated with the concepts of “smell”, “aroma”, “stench” and “stench” in the Russian and English languages was carried out using quantitative methods and automatic language processing on the basis of the National Corpus of the Russian Language (NCRL), corpus English (COCA) and the Mannheim Corpus for German. The obtained statistical indicators make it possible to identify the peculiarities of the use of adjectives, verbs and nouns that reflect the attitude to olfactory experience in English, Russian and German. The results allow us to compare descriptions of odors in different cultures and identify trends in the assessment of olfactory impressions. Patterns in the compatibility of olfactory vocabulary also indicate the tendency of keywords to acquire a positive or negative emotional connotation due to collocates.

Publisher

Pyatigorsk State University

Reference7 articles.

1. Kashcheeva A. V. Kvantitativnye i kachestvennye metody issledovaniya v prikladnoi lingvistike // Sotsial'no‑ekonomicheskie yavleniya i protsessy. 2013. № 3 (049). C. 155‑162.

2. Verkhozin S. S. O statuse kolichestvennykh metodov v lingvistike // Vestnik Irkutskogo gosudarstvennogo lingvisticheskogo universiteta. 2013. № 3 (24). C. 145‑150.

3. Grechachin V. A. Statisticheskie metody v issledovanii tekstov // Vestnik Bashkirskogo universiteta. 2018. № 3. C. 772‑775.

4. Kochetkova N. A. Statisticheskie yazykovye metody. Kollokatsii i kolligatsii // Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh. 2013. № 16. C. 301‑305.

5. Lee R. S. T. Natural Language Processing: A Textbook with Python Implementation / R. S. T. Lee, United International College: Springer Nature, 2023. 436 c.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3