Response to thermal environment in Tetranychus ludeni (Acari: Tetranychidae)

Author:

Ristyadi Dwi,He Xiong Zhao,Wang Qiao

Abstract

Tetranychus ludeni Zacher is a spider mite that has invaded all continents except Antarctica and become an economically important pest around the world. Understanding the plasticity of its life history traits as a response to temperatures provides critical information for its risk analysis and management. Here we tested its response to temperatures ranging from 15 to 30ºC over two generations. We found that there was no difference in the egg hatch rate and immature survival rate across temperatures in the first generation. However, the egg hatch rate was lower and immature survival rate was higher at 30ºC in the second generation. The sex ratio (proportion of females) of resultant adults was consistent under all test temperatures in both generations except for 30ºC in the second generation which was lower. Higher temperature accelerated development in both generations but the development at the lower temperatures was faster in the second generation. Adult body size in both generations generally decreased with the increase of temperature, with females being more likely than males to adjust body size in response to temperature changes they first experienced. Temperature-dependent body size was not translated into fecundity, but larger adults lived longer. The thermal threshold was lower and degree days (DD) were greater in the second generation than in the first generation. Our findings indicate that life history traits of T. ludeni are highly flexible and adaptive to dynamic thermal environment in successive generations. Furthermore, increasing temperature elevated the intrinsic rate of increase (rm) but shortened the generation time (T) and the time to double the population size (Dt). The net population growth rate (R0) was higher at 20 and 25ºC as compared to lower and higher temperatures.

Publisher

Systematic and Applied Acarology Society

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3