The roles of the biochemical and molecular changes in resistance of Tetranychus urticae populations selected with spiromesifen+abamectin mixture </p >

Author:

Ay Recep,Çevik BayramORCID,Alsay SafiyeORCID

Abstract

The physiological changes in Tetranychus urticae selected with spiromesifen+abamectin (S+A) mixture formulation were demonstrated by biochemical and molecular methods. The susceptible (GSS) population of T. urticae, was selected with S+A and made resistant with increasing doses of the mixture formulation. The resistant population was divided into two, and selection pressure was terminated in one population which is named IR (Interrupt resistant). In the other population, the selection with S+A was continued and the population named IR2. Activities of some detoxification enzymes (esterase, glutathione-S-transferase (GST) and cytochrome P450) were investigated in the GSS and IR populations. The activity of esterase, GST and P450 enzymes were increased by 1.77, 2.57 and 2.58-fold, respectively, in the IR population compared to the GSS population. Also, investigation of synergistic effects with esterase inhibitor (TTP), GST inhibitor (DEM) and P450 inhibitor (PBO) in this population revealed that all three synergists showed significant synergistic effects in IR population. In molecular studies, when the population was screened for the presence of two previously identified glutamate channel mutations (G314D and G326E) by qPCR with TaqMan probes no mutations could be detected in glutamate channels. and the CTD domain of acetyl coenzyme-A carboxylase (ACCase). Furthermore, possible genetic mutations in the biotin carboxylase domain (BCD) and carboxyl transferase domain (CTD) of the ACCase target sites were determined by sequencing. Although a single amino acid mutation G37D in the BCD of the ACCase gene of the IR and IR2 populations was detected, its association with spiromesifen resistance was not confirmed. The results indicated that increased detoxification and possible target site mutation may be responsible for the S+A resistance in the IR and IR2 populations.

Publisher

Systematic and Applied Acarology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3