Expression profiles of glutathione S-transferases genes in semi-engorged Haemaphysalis longicornis (Acari: Ixodidae) exposed to Cymbopogon citratus essential oil

Author:

Agwunobi Desmond O.,Pei Tingwei,Yang Jia,Wang Xiaoshuang,Lv Lihong,Shen Ruowen,Yu Zhijun,Liu Jingze

Abstract

Glutathione S-transferases (GSTs) are phase II detoxification enzymes, which function via combining with pesticidal molecules and catalyzing the conjugation of molecules by thiol of glutathione, so as to protect tissues from oxidative stress damage. In the tick Haemaphysalis longicornis, glutathione S-transferases (HlGST and HlGST2) have been previously identified. However, the relationship between the transcription of glutathione S-transferases and the essential oil treatment in ticks remains unexplored. Hence, in the present study, the transcription profiles of HlGST and HlGST2 mRNAs were evaluated in H. longicornis after exposure to Cymbopogon citratus essential oil. At 24 h post-exposure of H. longicornis to different sublethal concentrations of C. citratus essential oil, there was significant difference (P = 0.0001) in the transcription of HlGST. Tukey’s test showed that HlGST was significantly induced after treatment with 1% C. citratus essential oil (P = 0.0002); whereas no significant difference (P = 0.3551) was detected after treated by 2% C. citratus essential oil. No significant difference (P = 0.4555) in the transcription of HlGST2 between the treatment and the control group of 50% ethanol. Nevertheless, the down-regulation of HlGST2 in the treatment groups versus the untreated control group was not significant (P = 0.1208). The above results imply that the essential oil can modulate the expression of GST mRNA, therefore, further understanding of the underlying mechanisms of the GST at the molecular level could contribute to the development of effective control measures for ticks and tick-borne diseases.

Publisher

Systematic and Applied Acarology Society

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3