Rheological behavior of polysaccharide hydrogels of alginate reinforced by small amount of halloysite nanotubes for extrusion 3D printing

Author:

Molchanov V.S.1ORCID,Glukhova S.A.1,Philippova O.E.1ORCID

Affiliation:

1. Lomonosov Moscow State University

Abstract

The rheological properties of hydrogels of a natural polysaccharide sodium alginate and small amount of clay nanotubes of halloysite were investigated. Changes of rheological properties during the transition from a semi-dilute polymer solution to a hydrogel upon cross-linking by calcium ions were shown. In the gel state, the samples have a yield stress, and their viscosity decreases with the shear rate, but the properties are quickly recovered after the load removal. It was obtained that the addition of up to 0.3 vol.% nanotubes of natural clay halloysite leads to an increase by several times of a storage modulus and an yield stress of the hydrogels. At the same time, the practically important properties of shear thinning and the rapid recovery of properties after the load removing make the nanocomposite hydrogels of alginate and halloysite nanotubes promising for use as ink for extrusion 3D printing.

Funder

Russian Science Foundation

Publisher

Moscow University Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3