STRUCTURE AND DYNAMICS OF SNOW AND ICE FORMATIONS IN THE KHIBINY MOUNTAINS IN THE 21ST CENTURY

Author:

Vikulina M.A.1,Romanenko F.A.1,Zimin M.V.1,Efimova L.E.1,Pokrovskiy B.G.2

Affiliation:

1. Lomonosov Moscow State University

2. Geological Institute of the RAS

Abstract

In 1958 V.F. Perov, staff member of the Khibiny Research and Training Station of the MSU Faculty of Geography, described four snow-ice formations in the Khibiny Mountains and classified them as very small glaciers. Until our research began in 2005, these glaciers were not studied in detail. We used field observations, drilling, GIS and remote sensing methods to study the structure of the glaciers and evaluate changes in their geometry during 60 years. The snow-ice formations were drilled through for the first time and the ice cores underwent geochemical and isotope-oxygen analyses. The thickness of ice kernels varies from 0,2 to 1,6 m. Our investigations showed that despite a slight degradation, the glaciers` area remains relatively stable since 1958. This fact may be caused by the increase in solid precipitation in recent years. According to the analysis of climatic changes, in the early 2000s a decrease in snowfall was observed in the Khibiny Mountains. The maximum snow thickness at the meteorological site of the Khibiny station in 2002-2003 winter period was 55 cm. This could be a factor of more than 2 times decrease of glacier areas during 2000-2010. After 2007 there has been an increase in snow precipitation, and the maximum snow depth of 180 cm was observed in 2020, the absolute maximum for the whole period of observations (1984-2020). According to published data the increase in mean annual temperature at the plains of the Kola Peninsula is 2,3 ± 1°C during the last 50 years. However, mean monthly temperatures of the summer do not rise. We consider that, along with recently increasing snow precipitation, this is exactly what determine rather stable state of snow-ice formations in the Khibiny Mountains, which appeared to be more resistant to climate warming than mountain glaciers.

Funder

Russian Foundation for Basic Research

Publisher

Moscow University Press

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3