THE EFFECT OF NEUROTRANSMITTERS ON PROGRAMMED CELL DEATH AND FORMATION OF REACTIVE OXYGEN SPECIES IN THE EPIDERMIS OF PEA LEAVES

Author:

Kiselevsky D.B.1ORCID,Oleskin A.V.1ORCID,Samuilov V.D.1

Affiliation:

1. Lomonosov Moscow State University

Abstract

Neurotransmitters are found not only in animals, but also in other living organisms, including plants. They are found in other living organisms, including plants. However, the data on the functions of these compounds in the plant world are far from being comprehensive. In particular, the issue concerning their impact on plant cell death still awaits further research. In the present work, the effects of neurotransmitters on programmed cell death and the formation of reactive oxygen species (ROS) in plants were tested. Programmed cell death was estimated from the destruction of cell nuclei, and ROS was determined using 2ʹ,7ʹ-dichlorofluorescein. Dopamine, norepinephrine, serotonin, histamine, acetylcholine and its synthetic analog acetylthiocholine were used. The catecholamines dopamine and norepinephrine at concentrations of 0.01-1 mM suppressed the destruction of guard cell nuclei in the epidermis of pea leaves, which was caused by KCN. Serotonin and acetylcholine at a concentration of 1-3 mM, on the contrary, increased the destruction of nuclei that was induced by KCN. Histamine and acetylthiocholine had no effect on KCN-dependent destruction of nuclei at concentrations of 0.01-3 mM. Acetylthiocholine at a concentration of 3 mM, in contrast to natural neurotransmitters, caused the destruction of guard cell nuclei in the absence of KCN. Dopamine, norepinephrine, and serotonin reduced the formation of ROS in the epidermis of pea leaves, which was induced by menadione. Histamine, acetylcholine and acetylthiocholine did not have a similar effect. The results demonstrate that dopamine, norepinephrine and serotonin have antioxidant properties in plants. In addition, dopamine and norepinephrine can prevent cell death.

Funder

Lomonosov Moscow State University

Publisher

Moscow University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3