Novel Integration Strategy for GNSS-Aided Inertial Integrated Navigation

Author:

Qian Kun11,Wang Jian-Guo11,Hu Baoxin11

Affiliation:

1. Department of Earth and Space Science and Engineering, York University, Toronto, Canada

Abstract

The conventional integration mechanism in GNSS (Global Navigation Satellite Systems) aided inertial integrated positioning and navigation system is mainly based on the continuous outputs of the navigation mechanization, the associated error models for navigation parameters, the biases of the inertial measurement units (IMU), and the error measurements. Its strong dependence on the a priori error characteristics of inertial sensors may suffer with the low-cost IMUs, e.g. the MEMS IMUs due to their low and unstable performance. This paper strives for a significant breakthrough in a compact and general integration strategy which restructures the Kalman filter by deploying a system model on the basis of 3D kinematics of a rigid body and performing measurement update via all sensor data inclusive of the IMU measurements. This novel IMU/GNSS Kalman filter directly estimates navigational parameters instead of the error states. It enables the direct use of the IMU's raw outputs as measurements in measurement updates of Kalman filter instead of involving the free inertial navigation calculation through the conventional integration mechanism. This realization makes all of the sensors in a system no longer to be differentiated between core and aiding sensors. The proposed integration strategy can greatly enhance the sustainability of low-cost navigation systems in poor GNSS and/or GNSS denied environment compared to the conventional aided error-state-based inertial navigation integration mechanism. The post-processed solutions are presented to show the success of the proposed multisensor integrated navigation strategy.

Publisher

Canadian Science Publishing

Subject

Earth-Surface Processes,Geography, Planning and Development

Reference40 articles.

1. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

2. Anderson, B.D.O., J.B. Moore. 1979. Optimal Filtering. Englewood Cliffs, New Jersey: Prentice–Hall.

3. Aussems, Thomas. 1999. Positionsschätzung von Landfahr-zeugen mittels Kalman-Filterung aus Satelliten- und Koppelnavigationsbeobachtungen, PhD Dissertation, D 82, Publication of Geodätischen Instituts der Rheinisch-Westfälischen Technischen Hochschule Aachen. 1999.

4. Data Fusion Algorithms for Multiple Inertial Measurement Units

5. Beetz, Alexander. 2012. Ein modulares Simulationskoncept zur Evaluierung von Positionssensoren sowie Filter- und Regelalgorithmen am Beispiel des automatisierten Straßenbaus, PhD dissertation, No. 688, Series C, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Munich, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3