Abstract
Hawai‘ian ecosystems evolved in relative isolation and support an abundance of native and endemic species. As such, they are particularly vulnerable to introduced species that alter habitat and interfere with species interactions. Although mangroves are valued globally for shoreline protection and other services, their invasion of the Hawai‘ian islands may have negative effects on the abundance and functions of native species. On an island in Kāne‘ohe Bay, O‘ahu, we explored the relationship between invasion of the red mangrove, Rhizophora mangle, and abundance of the native burrowing shrimp Alpheus rapax, which shares its burrows with the endemic goby Psilogobius mainlandi in a mutualism that reduces predation on both. We hypothesized that the abundance of shrimp/goby burrows is reduced beneath mangroves due to increased cover associated with mangrove prop roots, which trap leaves and debris and may harbor the invasive red alga Gracilaria salicornia. At 3 mangrove-invaded sites, we conducted a survey of burrow density and benthic debris and found ~4–5× lower burrow density and 4× greater cover of debris under the mangrove edge compared to sandflats that were 1.5 and 5.0 m away. Burrow density was negatively correlated with total cover of benthic debris and with subgroups of that cover composed of G. salicornia or leaves. We tested the effect of debris removal over 2 weeks, which resulted in 3–8× more burrows. Thus, we provide evidence that invasive red mangroves, through trapping leaves and promoting presence of invasive G. salicornia among their prop roots, have strong negative effects on shrimp/goby burrow density. Although our study was limited in spatial scope, we propose that current efforts to remove mangroves in Hawai‘i, for both cultural and ecological reasons, will mitigate negative effects on endemic goby and native shrimp habitat.
Publisher
Instituto de Investigaciones Oceanologicas