Evaluating the effect of temperature on photosynthesis and respiration of articulated coralline algae using oxygen evolution and chlorophyll a fluorescence

Author:

Vásquez-Elizondo Román ManuelORCID,Kräemer Wiebke EORCID,Cabello-Pasini Alejandro

Abstract

Coralline algae form abundant and ecologically important submerged aquatic vegetation habitats throughout the world. However, algal performance is threatened by climate change and ocean acidification. Previous studies suggest that their photosynthetic performance will be compromised mainly at elevated temperatures. Understanding the impact of diverse climate change scenarios requires a clear and thorough comprehension of the photosynthetic response to temperature gradients. The objective of this study was to evaluate the short-term effect of temperature (10–35 °C) on the gross photosynthesis (GPS), respiration, and electron transport rates (ETRs) of 3 articulated coralline algae (Lithothrix aspergillum, Corallina officinalis, and Bossiella orbigniana) for a better understanding of their metabolism and to investigate the relationship between GPS and ETR as a function of temperature. The results showed that the coralline algal metabolism is highly sensitive to temperature, but responses were species-specific and can be related to their light adaptation/acclimation; the high-light-adapted L. aspergillum was least negatively affected. The photosynthesis to respiration ratio was optimal between 20 and 25 °C according to the local thermal regime but was significantly reduced toward higher temperatures, indicating strong carbon imbalances and highlighting the relevance of thermal stress for coralline algal performance. A strong correlation between GPS and ETR was found between 10 and 30 °C in all species, but both above saturation irradiances and at elevated temperatures (≥30 °C), a clear deviation from linearity occurred. This suggests that ETR is not a good proxy to estimate photosynthetic activity under light or thermal stress. This information should be useful for studies implementing global change scenarios and pulse amplitude modulated (PAM) fluorometry in coralline algae.

Publisher

Instituto de Investigaciones Oceanologicas

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3