Affiliation:
1. Moscow State University of Civil Engineering (National Research University) (MGSU)
Abstract
The article deals with the solution for the stress-strain state of a multilayer composite beam with rectangular cross-section, which is bended by normally distributed load. The intermolecular interaction between layers is accomplished by the contact layer, in which the substances of adhesive and substrate are mixed. We consider the contact layer as a transversal anisotropic medium with such parameters that it can be represented as a set of short elastic rods, which are not connected to each other. For simplicity, we assume that the rods are normally oriented to the contact surface. The contact layer method allows us to solve the problem of determining the concentration of tangential stresses arising at the boundaries between the layers and the corner points, their changes, as well as to determine the physical properties of the contact layer basing on experimental data. Resolving the equations obtained in this article can be used for the solution of many problems of the theory of layered substances. These equations were derived from the fundamental laws of the theory of elasticity and generally accepted hypotheses of the theory of plates for the general case of the bending problem of a multilayer beam with any number of layers. The article deals with the example of the numerical solution of the problem of bending of a three-layer beam. On the basis of this solution the curves were obtained, which reflect the stress-strain state of one of the layers. All these curves have a narrow area of the edge effect. The edge effect is associated with a large gradient tangential stresses in the contact layer. The experimental data suggest that in this zone the destruction of the samples occurs. This fact allows us to say that the equations obtained in this article can be used to construct a theory of the strength layered beams under bending.
Publisher
Moscow State University of Civil Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献