Using ENVI-met simulation to analyze heat island intensity in megalopolises

Author:

Le Minh Tuan 1,Shukurov Ilkhomzhon S.1,Gelmanova Margarita О.1ORCID,Slesarev Mikhail Yu.1ORCID

Affiliation:

1. Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. The simulation of urban microclimates, including the urban heat island (UHI) phenomenon, has turned all the more important for urban planning. Presently, the analysis of this phenomenon is feasible thanks to high computational power of computers and links between computer modeling instruments and databases that contain information on urban environments. Advanced hardware helps to study characteristics of urban microclimates by analyzing and assessing their exposure to various climatic and anthropogenic urban factors (urban morphology, land use, construction sites, albedo, etc.) Materials and methods. ENVI-met is a software model used to simulate microclimates in urban environments. This software can optimize proportions of buildings and streets, outdoor shading, outdoor space planning, air movement, and use of construction materials in respect of thermal comfort and measures taken to mitigate consequences of urban heat islands within the framework of environmental planning of new districts. The co-authors analyze Ha Dong, a Hanoi district characterized by the high density of high-rise buildings. The co-authors consider the example of this district to study the process of detailed simulation, analysis and assessment of UHI effects. Results. ENVI-met and its simulation capacity is employed to prove that the air temperature in Wang Fu, an urban area, gradually rises from 8 am to 5 pm, when the air temperature reaches its maximal value of 32.28 °C during the period of sixteen hours. UHI intensity was maximal between midnight and 1 am on May 29, 2017, when it reached 2.41 °C. Conclusions. Cities are complex systems exposed to a wide array of interactive factors that influence the urban climate change. The value of R2 equal to 0.94 has proven the reliability of ENVI-met applied to simulate and imitate the climate of Hanoi, which is a hot and damp tropical city.

Publisher

Moscow State University of Civil Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3