Dynamic response of the building construction system with a finite degree of freedom under a special action

Author:

Kolchunov Vitaliy I.12ORCID,Tuyen Vu Ngoc3ORCID,Nizhegorodov Dmitriy I.4

Affiliation:

1. Southwest State University (SWSU)

2. Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAACS)

3. Moscow State University of Civil Engineering (National Research University) (MGSU)

4. Mytishchi branch of the Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. In the normative documents of a number of countries on the standardization of the protection of buildings and structures from progressive collapse, for the calculation analysis under special impact, such a concept as a “zone of possible local destruction” of a structural system is used, outlined by a fragment of the building frame in places of hypothetically removed structural elements. The purpose of identifying such most stressed zones in the form of substructures is engineering visibility of the consequences of an emergency impact with an assessment of the stress-strain state of elements falling into such a zone. In this regard, in the work under consideration, a variant of modeling the dynamic additional loading of the reinforced concrete frame of a multi-storey building caused by its structural restructuring is proposed, which makes it possible to determine the parameters of the dynamic response of the substructure in the form of a two-span continuous beam with a finite number of degrees of freedom and to model in more detail the zone of possible local destruction of the elements of the building frame at the sudden removal of one of the structural structures in this area. Materials and methods. The zone of possible local destruction of the building frame is modeled by a fragment of the structural system adjacent to this zone. The process of removing a column was simulated by applying a load P(t) in the opposite direction, equal to the force in the removed column, calculated when calculating the entire frame of the building. To solve the system of equations of motion of the substructure, we use the method of expansion in terms of natural vibration modes, which is well known in the dynamics of structures. Results. The results of theoretical studies of the dynamic effect of a reinforced concrete structural system of a building with a finite number of degrees of freedom during its sudden restructuring caused by a special emergency impact in the form of a hypothetical removal of one of the load-bearing structures are presented. Conclusions. The equations of motion of a substructure in the form of a two-span continuous beam with a finite number of degrees of freedom constructed on the basis of the theory of the dynamics of structures can be used to analyze the special limiting state of reinforced concrete elements of structural systems of frames of buildings and structures.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3