A change model of the hydraulic characteristics of the territory occupied by the landfill of solid industrial and domestic waste

Author:

Kovrigin Artur A.1,Slesarev Mikhail Yu.1ORCID

Affiliation:

1. Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. A landfill of solid industrial and domestic waste (LSIDW) is a source of negative impact on the environment. Although landfills have coverings, and they are equipped with engineering systems designated for the capturing and treatment of the biogas, LSIDW landfills still have a negative impact on subsurface and surface waters due to the spread of leachate. The purpose of this work is to obtain predictive data on changes in the hydrogeological characteristics of the territory of Salaryevo landfill, and to develop a simulation model to assess the application of technical solutions in the course of the landfill reclamation. Materials and methods. Processing Modflow is the software designated for the 3D modeling of filtration and transportation of pollutants. An engineering report based on the engineering and environmental surveys, performed by JSC MosvodokanalNIIproekt in the Salaryevo landfill and its environs in 2017, served as the input data designated for a simulation model. Results. Processing Modflow software allowed to consider three options of cutoff walls, tailored to this landfill. The installation of cutoff walls on the east and west sides of the landfill, to be performed with regard for the sorption function of the cutoff walls, is the most effective solution. The results have shown that the cutoff walls, installed to prevent the leachate from seeping, can potentially reduce the area, exposed to the impact, by 500 m. Conclusions. It is recommended to install a cutoff wall in the west and a sorption curtain in the east in the course of recultivating Salaryevo landfill; this solution will ensure the containment of the leachate inside the landfill and prevent its spreading.

Publisher

Moscow State University of Civil Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3