A research into the development of models of random variables as part of the structural reliability analysis performed in the absence of some statistical information

Author:

Soloveva Anastasia A.1,Solovev Sergey A.1ORCID

Affiliation:

1. Vologda State University (VSU)

Abstract

Introduction. The scientific review article addresses the approaches to the modeling of random variables performed as part of the structural reliability analysis of elements provided that some statistical information missing (limited). The objectives of the research include the statement of the problem of the probabilistic structural reliability analysis subject to incomplete statistical data, the study of the development of approaches to the generation of models of random variables within the framework of this problem, as well as the assessment of the current state of affairs in this field and some development prospects for the coming years. Materials and methods. The principal model of a random variable, considered in the article, represents a p-box (pro­bability box) model. A p-box is an area of possible functions of distributed probabilities of a random variable generated by the two boundary functions of the probability distribution. The article addresses p-boxes generated using the fuzzy set theory, the probability theory, Kolmogorov–Smirnov boundaries, etc. Results. The approaches, considered in the article, are illustrated by the numerical examples of p-boxes that use the same statistical data. P-boxes, based on the probability theory, allow to accurately simulate a random variable; however, a priori information about the type of the distribution function is needed. P-boxes, based on the possibility theory, can be used even if an extremely small amount of statistical data is available, and it is also necessary to carefully address the issue of assigning the cutoff (risk) level. P-boxes based on the Chebyshev inequality and the Kolmogorov–Smirnov statistics allow to effectively simulate random variables regardless of the type of the probability distribution. However, these approaches may generate an assessment that is too uninformative for decisions to be made in a number of tasks. Conclusions. The choice of a probabilistic model of a random variable for the further reliability analysis of structural elements will depend on the amount and type of statistical data obtained about the random variable. In particular cases, if the statistical information represents a subset of intervals, special approaches based on the Dempster–Shafer theory can be used. A promising and relevant method that underlies both the development of probabilistic models of random variables and the analysis of structural reliability in case of missing statistical information encompasses the employment of numerical modeling methods that employ surrogate models (kriging, Bayesian networks, interval predictors, etc.) and neural network algorithms.

Publisher

Moscow State University of Civil Engineering

Reference100 articles.

1. Schwarz W. No interpretation of probability. Erkenntnis. 2018; 83(6):1195-1212.

2. Kurguzov K.V., Fomenko I.K., Shubina D.D. Probabilistic and statistical modeling of loads and forces. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(9):1249-1261. DOI: 10.22227/1997-0935.2020.9.1249-1261 (rus.).

3. Schobi R., Sudret B. Structural reliability analysis for p-boxes using multi-level meta-models. Probabilistic Engineering Mechanics. 2017; 48:27-38. DOI: 10.1016/j.probengmech.2017.04.001

4. Dudina I.V., Zherzheva S.A. Application of applied methods of reliability theory in structural design. Proceedings of the Bratsk State University. Series: Na­tural and Engineering Sciences. 2016; 1:117-121 (rus.).

5. Tamrazyan A.G. Concrete and reinforced concrete: problems and prospects. Industrial and Civil Engineering. 2015; 8:30-33. (rus.).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3