Progressive limit state at critical levels of internal potential energy of deformation

Author:

Stupishin Leonid Yu.1

Affiliation:

1. Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. The work is devoted to one of the main issues of structural mechanics - the determination of the elements in which the limiting state occurs first. At first glance, the task has an infinite number of results, meaning an infinite number of options for loading the system. The problem becomes solvable if one examines the structure of a building (structure) for possible variations in displacements (forces) in the nodes of the structure. For this approach, it becomes possible to determine the main values and vectors of displacement of the system, which correspond to the maximum (minimum) values of deformations (forces) in the rods of the system. As close approaches to the formulation of the problem, one should indicate the theory of the limiting equilibrium of structures under the assumption of the work of the material under flow conditions, where the equality of the work of external forces and internal forces is considered (kinematic method), or possible static stress states of the system for maximum limiting loads (static method). The theory of protecting buildings and structures from progressive collapse seeks to solve similar problems, focusing on options for design solutions that prevent destruction from non-design loads. Materials and methods. To determine the options for the distribution of extreme values of internal forces (deformations) in the system, the problem is formulated in the form of an eigenvalue problem. The latter turns out to be the most convenient mathematical model of the problem, since, in addition to extreme values (as in the optimization problem), it allows one to take into account the values of the problem on the upper and lower bounds. The theoretical basis for the formulation of the problem is the criterion of the critical levels of the internal potential energy of the system, which makes it possible to find the self-stress states of the structure corresponding to the limiting states of the structural elements. Results. The methodology for solving the problem is illustrated by the example of a statically indeterminate five-rod truss, which was also considered by other authors. The matrix formulation of the problem and a detailed algorithm for its solution are given. It is shown that the values of the internal forces in the rods, obtained using the traditional method, are in the interval between the maximum and minimum main values of the self-stress state of the system. Solutions are given at each of the critical energy levels corresponding to the disconnection of bonds from work.

Publisher

Moscow State University of Civil Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research of criteria for analyzing the load-bearing capacity of buildings in areas of technogenic impact caused by mining operations;International Journal of Structural Integrity;2024-07-15

2. The Process of Progressive Limiting State and Determination of the Residual Strain Energy of a Structure Based on the Force Method;Lecture Notes in Civil Engineering;2024

3. Cross-section geometry optimization of flexural thread using energy criterion;Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture;2023-08-24

4. Applying conditional optimization to determine the allowable loads on flexurally rigid threads;Herald of Dagestan State Technical University. Technical Sciences;2023-02-10

5. RESEARCH OF THE DEFORMATION CHARACTERISTICS OF COAL PILLARS PROTECTIVE STRUCTURES OF HAULAGE DRIFTS;Journal of Donetsk Mining Institute;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3