Optimizing the landslide-prone slope stabilization

Author:

Solsky Stanislav V.1,Bykovskaya Sofya A.1

Affiliation:

1. The B.E. Vedeneev All Russia Institute of Hydraulic Engineering (Vedeneev VNIIG)

Abstract

Introduction. Nowadays, the study of landslide processes is one of the most intensive aspects of construction and maintenance of industrial and civil buildings and installations. The landslides violate the stability of foundations and entire complexes of installations, so the assessment of the stability of the slopes is the most important task before starting the construction. Currently, there is a large number of landslide classifications, which characterize the conditions of their formation, the history of geological development, their age, and structure. Normative documentation gives three ways of slope slump control: preventive, restricting, and liquidation ones. However, this source does not give systematic validity of the engineering solutions. The study sets the following tasks: to develop an algorithm for the optimal choice of rational slope strengthening in landslide construction conditions and to test it with a specific example. Materials and methods. The study analyzed the publications on theoretical and practical experience in dealing with landslides as well as normative documents. Numerical simulation methods were used to calculate the slope stability when testing the algorithm. Results. Using the introduced classification, the study presented an algorithm that makes it possible to choose a rational way of slope strengthening under landslide construction conditions. The concept of the algorithm allows step-by-step approximating parameters of a landslide-prone slope model to the real conditions, on the one hand, and selecting the most reasonable anti-landslide measures, on the other hand. The developed algorithm was tested on the territory of a large industrial complex situated on river overflood plain fringes. By applying the value engineering comparison of several slope stabilization variants, the research has taken the most optimal one of them for realization. Conclusions. The study developed the author’s classification and algorithm for the selection of optimal design solutions to stabilize landslide-prone slopes or slants. Successful approbation of the algorithm confirmed its practical applicability. The algorithm allows choosing the most effective complex for protection against landslides.

Publisher

Moscow State University of Civil Engineering

Reference20 articles.

1. Mikhailov L.A., Solomin V.P. Emergencies of natural, man-made and social nature and protection from them. Moscow, Peter Publ., 2008; 234. (rus.).

2. Lomtadze V.D. Engineering geology. Engineering geodynamics. Leningrad, Nedra Publ., 1977; 479. (rus.).

3. Ivanov I.P., Trzhtsinsky Yu.B. Engineering geodynamics. St. Petersburg, Science Publ., 2001; 416. (rus.).

4. Savarensky F.P. Engineering geology. Moscow, Leningrad, GONTI Publ., 1939; 488. (rus.).

5. Popov I.V. Engineering geology. Moscow, Gosgeolizdat Publ., 1951; 444. (rus.).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3