Investigation of antiscalant dosing influence on scaling process in reverse osmosis facilities and membrane surface adsorption

Author:

Frenkel Val S.1,Pervov Alexey G.2,Andrianov Alexey P.2,Golovesov Vladimir A.2

Affiliation:

1. GREELEY and HANSEN

2. Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. Understanding of crystal growth mechanism enables to develop efficient tools to control scaling and improve the process of treatment using membranes and increasing the amount of filtrate output. This investigation is aimed at studying an antiscalant behaviour in reverse osmosis (RO) process when treating ground water. Experimental dependences of calcium carbonate scaling efficiency on antiscalant dosage were found. Rates of adsorption on crystal surface of scaling deposit and on membrane surfaces were compared. Dependences of rates of inhibitor adsorption on crystal surface versus scaling rates were determined. Inhibitor adsorption on RO membrane surfaces was studied. New approaches to studying crystal growth mechanism in the presence of polymeric inhibitors are presented. Materials and methods. In the course of experiments conducted with using inhibitor dissolved in distilled water, inhibitor sorption on membrane surface was observed in the absence of calcium ions. As to experiments with dosing the inhibitor in tap water, the inhibitor sorption on the membrane did not occur: the inhibitor was adsorbed on the surface of the scaling crystals. Results. Experimental relationships are obtained that show dependencies of calcium carbonate deposit growth rates versus RO facility filtrate output values in the presence of different antiscalants with their dose values of 3, 5 and 7 mg/l. The article shows that antiscalant dose value does not provide substantial influence on antiscalant efficiency when natural water with low hardness is treated in the RO facility. This permits substantial reduction of operational costs. It was also proved that inhibitor is not adsorbed on membrane surface during natural water treatment that also confirms efficiency of low antiscalant dosing. Conclusions. Low hardness values of natural water (3–5 mill equivalents per liter) demonstrate that antiscalant efficiencies do not depend on its dose. Rate of inhibitor adsorption on crystal surface during calcium carbonate deposition also increases with scaling rate increase. Rates of antiscalant consumption increase with antiscalant dose values. In natural water the dissolved antiscalant molecules are bonded with calcium ions therefore antiscalant does not react with membranes and is not adsorbed on membrane surface.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3