Spatial and correlation analysis of engineering-geological survey data for logistics center construction

Author:

Kurguzov Konstantin V.1,Fomenko Igor K.1ORCID

Affiliation:

1. Sergo Ordzhonikidze Russian State University for Geological Prospecting (MGRI)

Abstract

Introduction: at present, the geostatistical methodology is broadly used abroad for constructing spatial-correlation and spatial-stochastic models of lithoengineering systems, including description and analysis of soil body heterogeneity. The main goal of this work is an attempt to evaluate the possibility of generating a spatial-correlation model of lithoengineering space based on survey data which could be used for subsequent simulation and deterministic-stochastic analysis of geotechnical structures as well as when designing bases and foundations. Materials and methods: main input parameters for spatial analysis were geological survey report and cone-penetration test (CPT) data. The data were analyzed using descriptive statistic methods, with the calculation of particular and ambiguous values and using statistical software STATISTICA. Later use of the results of the statistical analysis aims at the application of geostatistical interpolation models (kriging) for generating spatial structures of deformation features. The article elaborates experimental correlation functions (variograms) to validate the developed spatial structures. The functions show not only the validity of the spatial simulation but also a level of heterogeneity of the researched soil body. Results: the statistical analysis of the initial data showed relative homogeneity of the researched soil body properties what is substantiated by GOST 20522 instructions. Nevertheless, the geostatistical analysis resulted in the opposite conclusion. Principally, this is due to the lack of information on the researched geological medium. Conclusions: requirements of current Russian standard GOST 20522 do not contain a sufficient amount of information for geostatistical analysis and simulation of a soil body based on modern geostatistical methods. As a result, data of standard engineering-geological researches cannot be used for developing digital foundation models as well as for using probabilistic approaches in geotechnics.

Publisher

Moscow State University of Civil Engineering

Reference19 articles.

1. Fenton G.A., Griffith D.V. Risk assessment in geotechnical engineering. John Wiley & Sons, Inc. 2008; 91-103. DOI: 10.1002/9780470284704

2. Pshenichkin A.P. Basics of probability-statistical theory of structure-soil interactions. Volgograd, VolgASU Publ., 2006; 9-63. (rus.).

3. Bolotin V.V. Application of probability theory and reliability theory in structural calculations. Moscow, Building Literature Publishing House, 1971; 4-10. (rus.).

4. Dubrule O. Geostatistics for seismic data integration in earth models. EAGE, 2003; 10-12. DOI: 10.1190/1.9781560801962

5. Isaaks E.H., Srivastava R.M. Applied geostatistics. NY, Oxford University Press, 1989; 41-64.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3