Affiliation:
1. Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (NSUACE (Sibstrin))
2. Novosibirsk State University (NSU)
Abstract
Introduction. Being used in various industries, heat exchangers most often work under conditions of variable coolant flows and temperatures. At the same time, the existing theories of calculating the heat exchanger operation modes are based on the use of constant unitless parameters at any operation mode. Taking into account the effect of coolant rates on the heat transfer coefficient of the heat exchangers, the given relations are bound to specific types of heat exchangers and can only be used at constant coolant temperatures. The purpose of this study is to obtain expressions for determining the effect of coolant flow rates on the variable heat exchanger parameter.
Materials and methods. The main variable operation modes for water-to-water heat exchangers used in heat supply systems are determined. Using simulation in the PTC Mathcad software, dependencies describing the change in the heat exchanger parameter for all the considered variable operation modes are defined. This made it possible to obtain a general formula for the change in the heat exchanger parameter for varying coolant flow rates. Coefficients in this formula take into consideration the effect of coolant temperatures, which cannot be known when calculating variable conditions, especially when the interconnected heat exchangers are operating.
Results. To test applicability of the existing relations describing the change in the heat exchanger parameter and of obtained formula, a large number of heat exchangers is calculated at variable operation modes. Comparison with the simulation results shows that the correlations of heat exchanger theories work well at the mode with constant coolant temperatures only, while their use at other operation modes can lead to large calculation errors.
Conclusions. The obtained formula allows finding the effect of coolant flow rates on the variable heat exchanger parameter. The formula can be used to predict the operation modes of large systems including a large number of various-type heat exchangers.
Publisher
Moscow State University of Civil Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献