Numerical simulation of sea-wave diffraction with random phases on breakwaters

Author:

Gogin Aleksandr G.1ORCID,Kantarzhi Izmail G.1

Affiliation:

1. Moscow State University of Civil Engineering (National Research University) (MGSU)

Abstract

Introduction. Numerical simulation of sea gravity waves interaction with seaport barriers using modern numerical wave models is considered. The predictive power of some commonly used models is examined in relation to the diffraction of sea waves with a random phase in comparison with known analytical methods and experimental data. Materials and methods. Numerical simulation is carried out using modern numerical wave models implemented in the DHI MIKE 21 software package. A spectral wave model with a function for correcting wave diffraction in shallow water and a phase-resolving wave model based on the Boussinesq equations are used. Results. Distribution of diffraction coefficients behind the breakwaters of the conventional port water area has been obtained for all models. As a result of the comparison, it was found that models of irregular waves (waves with random phases) have better wave energy distribution behind the breakwaters as compared to regular (monochromatic) wave models. It is noted that the type of frequency distribution of random waves has almost no effect on the diffraction coefficients of the water area, while the angular distribution, on the contrary, has a significant effect. Conclusions. The wave model based on the Boussinesq equations in the irregular wave approximation is determined as the numerical wave model with the best predictive ability. The spectral wave model with diffraction correction function, which is less demanding on computer power, also made it possible to obtain results close to the reference ones. It is confirmed that regular wave propagation modelling of sea waves can give incorrect results in those seaport water areas where wave diffraction effects are strong.

Publisher

Moscow State University of Civil Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3