Relationship between empirical laws of turbulent combustion of dust/air mixtures

Author:

Poletaev N. L.1ORCID

Affiliation:

1. All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters

Abstract

Introduction. An array of known experimental data, mainly obtained in a standard 1 m3 chamber, is considered in the article. It allowed to identify the nature of three dependences of the turbulent combustion of dust, including the dependences of limited oxygen concentration (LOC) and explosive index Kst on the energy of ignition source Eig (on a logarithmic scale) and the dependence of Kst on the initial oxygen content in the air Cox.Empirical dependencies. The analysis showed that all considered dependences, having a relative accuracy of about 20 % can be represented as linear functions of an argument varying within the following limits: Eig varies from minimum ignition energy Emin to 10 kJ; Cox ranges from LOC to 21 % vol. According to the nature of dependence of Kst on Eig, all dusts are divided into two types. For the first type of dust, Kst does not depend on Eig. For the dust of the second type, Kst (Eig – Emin).Relationship of empirical dependencies. It is shown that the considered empirical dependences should be interrelated for the dust of the second kind. Namely, slopes Cn (n = 1, 2 or 3 as the number of the dependence) of linear functions, approximating the empirical dependences for a particular dust sample, satisfy the relationship: С2(21 vol. %) = –С1∙С3(10 kJ). Due to the absence of a dust sample, for which data on all three dependences are available, the obtained relationship was confirmed for the average values of parameters: <С2(21 vol. %)> = =–<С1>∙<С3(10 kJ)>.Discussion of the result. The satisfactory accuracy of the relationship between C1, C2 и C3 gives rise to the confidence in the objectivity and relationship of the considered empirical dependences of the turbulent combustion of dust.Conclusions. It is shown that the considered empirical dependences of the turbulent combustion of dust in a 1 m3 chamber are interrelated and the form of this relationship is identified.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3