The heating of a stream of particles by thermal counter radiation

Author:

Poletaev N. L.1ORCID

Affiliation:

1. All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters

Abstract

Introduction. It is accepted that the depth of heating of the dust/gas/air mixture by the radiation of combustion products SR is equal to the length LR of the free path of radiation in the mixture. Numerical simulation of combustion of a gas-air mixture that has inert particles, taking into account the re-radiation of heat by heated particles of the fresh mixture, led to ratio SR >> LR. In this work, the analytical assessment of ratio χS = SR/LR is performed.One-dimensional problem model. The co-authors determined stationary temperature distribution over the flow of initially cold monodisperse particles suspended in vacuum. Particle velocity V is directed toward a heat-radiating, absolutely black surface that is permeable by particles. Simplifying assumptions are used: radiation consists of two oppositely-directed flows of electromagnetic energy; interaction between particles and radiation is described in the approximation of geometric optics; the temperature inside the particle is the same. Problem solving. It is shown that χS is determined by V=Vcp / (εT 0,5, σTb)3 , where cp, εT, σ, Tb are, respectively, heat capacity per unit volume of the suspended matter, integral emissivity of the particle material, the Stefan-Boltzmann constant, and the surface temperature. For ≤ 2.8, re-emission can be neglected: χS ≈ 1. At ≤ 1.2, temperature distribution regulates re-emission: χS ≈ 5 –1/(2 – εT) >> 1.Solution discussion. The analytical solution satisfactorily describes the available numerical solutions and experimental data for the case of combustion of a dust/gas/air mixture after specifying the parameters of a simplified model: the radiating surface should be understood as the flame front, Tb is the combustion temperature, and cp is the overall heat capacity of the mixture. The estimate ≤ 1.2 indicates the final high temperature of the gas suspension, the possibility of its autoignition far from the flame, and the need to change initial assumptions when simulating re-emission.Conclusions. Analytical evaluations make it possible to employ ratios SR >> LR and SR ≈ LR for the suspension over a thermal radiation source in vacuum. Conditions for the application of the results of simplified simulation of re-emission to the combustion of a dust/gas/air mixture are formulated.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3