The kinetics of intumescent flame retardant foaming

Author:

Arkhangelsky I. V.1ORCID,Godunov I. A.2ORCID,Yashin N. V.2ORCID,Naganovskii Yu. K.3ORCID,Shornikova O. N.1ORCID

Affiliation:

1. Lomonosov Moscow State University

2. Lomonosov Moscow State University; Institute of New Carbon Materials and Technologies (INCMAT)

3. All-Russian Research Institute for Fire Protection of Emercom of Russia

Abstract

Introduction. Intumescent flame retardants are intensively used as passive fire protection means. Under fire conditions, these coatings foam and turn into coke, which turns into ash. These products have various fire resistant properties. These transformations are possible due to the foaming process, whose kinetics determines the fire protective characteristics of the compositions used. The paper considers the kinetics of the foaming process in the course of the pyrolysis of four different foaming compositions. The classical triad was used as a thermally expanding agent for the three of them, it includes ammonium polyphosphate, pentaerythritol, and melamine, and the fourth one has intercalated graphite.Research methods. Thermal analysis is widely used to identify and study various materials, substances and fire retardants. However, we have not found any kinetic studies performed using methods of thermal analysis in the literature. In this work, methods of non-isothermal kinetics are used to identify the mechanism of foaming. For this purpose, four series of thermogravimetric tests were carried out at different heating rates for each composition under study. The results of the experiment made it possible to solve inverse and direct kinetic problems and identify mechanisms of the processes.Results and discussion. Methods of non-isothermal kinetics were employed to show that low-temperature stages of thermolysis can be considered as gross-one-stage processes for all samples. The solution of the direct kinetic problem has helped to identify that the limiting foaming stage is described by the Avrami – Erofeev equation for all compositions under study, while the values of kinetic parameters differ significantly. Consequently, foaming proceeds are similar for samples having different compositions. The foaming of the sample containing intercalated graphite depends on heating conditions.Conclusions. It was identified that the studied compositions transform into the viscous-fluid state at high temperatures. In this case, the limiting stage of the foaming process is the nucleation of primary bubbles in the volume of the liquid phase. This process determines the kinetics of foaming, coke properties and its thermophysical characteristics.

Publisher

Moscow State University of Civil Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3